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Introduction

* We consider a simple Wireless Sensor network (WSN), which is
a space that has sensors distributed on it, each sensor has to be
visited by a Mobile Charger (MC) to recharge its battery.

* The battery capacities of the sensors are ditfferent.

* Recent breakthroughs in rechargeable batteries, provide several
applications of mobile vehicles in the field of wireless networks.



Introduction

* We assume the MCs have a maximum certain speed, with
infinite power.

* We consider instantaneous charging once the sensor is visited
by the MC.

* The problem of minimizing the number of those MCs in
Wireless Sensor Networks (WSNs) is the Mobile Charger
Coverage Problem
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Previous Work

* Wu et al. have come up with an optimal solution for the
homogeneous mobile charger coverage problem for both the 1-
D ring and 1-D line distributions of sensors.

* They showed that the solution for a line distribution has at most
one MC more than the number of MCs in the solution of the
same distribution on a ring.

R. Beigel, ].Wu, and H. Zheng. “On optimal scheduling of multiple mobile chargers in wireless sensor
networks.” In Proceedings of the first international workshop on mobile sensing, computing and

communication (MSCC "14), 1-6, 2014.



Previous Work

* Their optimal solution to solve the homogeneous line problem
is done by simply scheduling k MCs to cover non-overlapping
fixed intervals of length 0.5 so that all of the sensors are
covered.

» Assuming that the maximum speed of the MCs to be one unit distance per unit, and the frequencies
of the sensors to be 1.

R. Beigel, ].Wu, and H. Zheng. “On optimal scheduling of multiple mobile chargers in wireless sensor
networks.” In Proceedings of the first international workshop on mobile sensing, computing and
communication (MSCC "14), 1-6, 2014.



Previous Work

*On the top of that, they started the investigation of the
heterogeneous problem by proposing an approximation
algorithm with a factor of 2 that solves the problem for a line
distribution of sensors with any frequencies.

Algorithm 2 Greedy Algorithm for the Heterogeneous

WSNs
Input: Locations {z1,...,z,} and frequencies { f1, ..., fn} of
uncovered sensors {1, ..., Sp };

1: if n = 0 then return;

2: Generate a car that goes back and forth as far as possible
at a full speed to cover sensors at {xy,...,z;_1};

3: Recursively call Algorithm 2 for {s;,...,s,};

R. Beigel, ].Wu, and H. Zheng. “On optimal scheduling of multiple mobile chargers in wireless sensor

networks.” In Proceedings of the first international workshop on mobile sensing, computing and
communication (MSCC "14), 1-6, 2014.



Previous Work

* From there, we tackle the problem of the heterogeneous case
with sensors of frequencies of 1’s and 2’s to investigate the
boundaries between the tractable and intractable variation of
the problem.
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The Optimal Solution of the Problem
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Fig. 1: Toy example for the problem showing an optimal MC-solution.



The Optimal Solution of the Problem

*  We reduce the search space for the MC solution into one that
has at least one optimal solution by imposing some
restrictions for the possible solution. We will call our target
optimal solution O.

Property 1: The optimal solution @ has the leftmost uncov-
ered sensor completely supplied by exactly one MC.

Property 2: No sensor is supplied by more than two MCs in
the optimal solution O.

Property 3: An MC’s starting point is always more than 0.25
away from the starting point of the previous MC in O.



The Optimal Solution of the Problem

* We generate the MCs one by one determining the start point of
the currently-generated MC and the end point of it.

* Determining the start point is straightforward: Start from the
leftmost sensor that has not been covered so far.

* Determining the end points is the hard part.



The Optimal Solution of the Problem

Algorithm 1 Endpoint selection for MC

Start ﬂ End1l End2
Input: Sensor locations {zq, o, ..., z,} and frequencies | ' '

{flzer‘--:fn}%ka{1:2}' - El -~ El Ty lzl naw

The length [ of the previous MC’s coverage area // [ = 0 | I i I | — |

if there is none. B _ N v . 405
Output: The set of possible endpoints for the MC. A Viast = 0-25 % +‘0'25 Yrirst partition o
Depending on criterion C, Assign Possible_Endpoints to be: leovered Leovered
Case 1. {yﬁna]s ypartition}-
Case 2: {z1 + 0.25}.

Case 3: {z1 + 0.25, 21 + [}.

Fig. 2: Deploying an MC with no previously “visited” sensors.
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Fig. 3: Deploying an MC with previously visited sensors.



The Optimal Solution of the Problem

Algorithm 2 Search space for the optimal solution O

Input: Sensor locations {z1,z2,...,z,} and frequencies

{flafza“* ?fﬂ.}? fk S {1*2}
Output: The set of possible MC-solutions including O.
Initialization: All sensors are unvisited.
S = {} //The search space of the MC-solutions.
[ = 0 //The last deployed MC’s coverage area.
Optimal(z, zo,...,2,,[,5):
1: if all sensors are completely supplied then
S = S U {Last generated MC-solution}.
return
2: Call Algorithm 1 to determine Possible_Endpoints.
3: for each k in Possible _Endpoints do
4:  Generate an MC that covers [z, k], add it to the current
MC-solution, and let [ = k& — z4.
5:  Eliminate all sensors in [z, 21 + 0.25] and 1-sensors in
[:}:1 + 0.25, k]
6:  Annotate the 2-sensors in (z; + 0.25, k] as ‘visited’.
7. Call Optimal(zy, z2,...,2,,[,S) where z; is the
leftmost sensor.

Theorem 1. The MC-solution in S, which is produced by
Algorithm 2, with the least number of MCs is the optimal
solution O and has a time complexity of O(d x 16%).
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* 3) The general greedy 2-approximation solution.



Approximation Solutions of the Problem

* 1) Greedy 1.5-approximation solution.

* 2) Enhancement of the greedy 1.5-approximation solution.

Algorithm 3 Greedy 1.5-approximation solution

Input: Sensor locations {z1,x2,...,x,} and frequencies
{fi.fo,. .. fu}, fr €{1,2}.

Output: A 1.5-approximation MC-solution.

Initialization: ¢ = 0 //The MCs™ indexes.

I: While there is a non-zero leftmost sensor = do

2 i=i+1.

3:  if there is a leftmost 2-sensor 2’ in [z, z + 0.25] then
Generate M C; that covers [z, z' + 0.25].

4:  else

Generate M C; that covers [z, z + 0.5].

Eliminate the sensors in [z, z + 0.25].

6:  Subtract 1 from visited sensors in (z + 0.25, z + 0.5].

7: for every M C5;, generate an additional MC that covers the

same area M C'5; covers.
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Fig. 5: The lower bound of the optimal, the 1.5-approximation algorithm, and
the enhanced 1.5-approximation algorithm.



Approximation Solutions of the Problem

* 3) The general greedy 2-approximation solution.

Algorithm 4 General greedy solution

Input: Uncovored sensor locations {z,29,...,2,} and Mgt Hesoltion - &% oo &
frequencies {f1, fa, . fu}, fr € R, e & ! . |

Output: A 2-approximation MC-solution. — |

l: if n = 0 then return. I%I I%' I

2: Generate an MC that goes back and forth as far as possible a b b+025 ¢
at a full Speed to cover sensors at {'-Tl L 111-?3—1}- Fig. 6: The optimal solution @ and Algorithm 4’s approximation solution.

3: Recursively call Algorithm 4 for {x;,...x,}.
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Simulation

* We consider multiple variations of the distribution of sensors:
* 1) Uniform distribution

* 2) Cluster distribution

* 3) Mixed distribution



Simulation
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Future Work

* Considering the optimization of the trajectories of the
minimized number of MCs in term of power consumed.

* Studying different line WSNs of different frequency ranges,
prove the NPP-hardness of this problem, and come up with
better approximations.



Conclusion

* We obtain the optimal solution for this problem by exhausting
all of the possible solutions with specific properties, and
conjecture the NP-hardness of it.

* We propose a novel 1.5-approximation algorithm, an
enhancement of this approximation, and an analytical
expansion for a previously proposed general 2-approximation
algorithm.

* We verity the performance of the algorithms by the simulation.
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